altair.Y

class altair.Y(shorthand=Undefined, aggregate=Undefined, axis=Undefined, band=Undefined, bin=Undefined, field=Undefined, impute=Undefined, scale=Undefined, sort=Undefined, stack=Undefined, timeUnit=Undefined, title=Undefined, type=Undefined, **kwds)

Y schema wrapper

Mapping(required=[shorthand])

Attributes:
shorthand : string

shorthand for field, aggregate, and type

aggregate : Aggregate

Aggregation function for the field (e.g., "mean", "sum", "median", "min", "max", "count" ).

Default value: undefined (None)

See also: aggregate documentation.

axis : anyOf(Axis, None)

An object defining properties of axis’s gridlines, ticks and labels. If null, the axis for the encoding channel will be removed.

Default value: If undefined, default axis properties are applied.

See also: axis documentation.

band : float

For rect-based marks ( rect, bar, and image ), mark size relative to bandwidth of band scales or time units. If set to 1, the mark size is set to the bandwidth or the time unit interval. If set to 0.5, the mark size is half of the bandwidth or the time unit interval.

For other marks, relative position on a band of a stacked, binned, time unit or band scale. If set to 0, the marks will be positioned at the beginning of the band. If set to 0.5, the marks will be positioned in the middle of the band.

bin : anyOf(boolean, BinParams, enum(‘binned’), None)

A flag for binning a quantitative field, an object defining binning parameters, or indicating that the data for x or y channel are binned before they are imported into Vega-Lite ( "binned" ).

If true, default binning parameters will be applied.

If "binned", this indicates that the data for the x (or y ) channel are already binned. You can map the bin-start field to x (or y ) and the bin-end field to x2 (or y2 ). The scale and axis will be formatted similar to binning in Vega-Lite. To adjust the axis ticks based on the bin step, you can also set the axis’s tickMinStep property.

Default value: false

See also: bin documentation.

field : Field

Required. A string defining the name of the field from which to pull a data value or an object defining iterated values from the repeat operator.

See also: field documentation.

Notes: 1) Dots ( . ) and brackets ( [ and ] ) can be used to access nested objects (e.g., "field": "foo.bar" and "field": "foo['bar']" ). If field names contain dots or brackets but are not nested, you can use \ to escape dots and brackets (e.g., "a\.b" and "a\[0\]" ). See more details about escaping in the field documentation. 2) field is not required if aggregate is count.

impute : anyOf(ImputeParams, None)

An object defining the properties of the Impute Operation to be applied. The field value of the other positional channel is taken as key of the Impute Operation. The field of the color channel if specified is used as groupby of the Impute Operation.

See also: impute documentation.

scale : anyOf(Scale, None)

An object defining properties of the channel’s scale, which is the function that transforms values in the data domain (numbers, dates, strings, etc) to visual values (pixels, colors, sizes) of the encoding channels.

If null, the scale will be disabled and the data value will be directly encoded.

Default value: If undefined, default scale properties are applied.

See also: scale documentation.

sort : Sort

Sort order for the encoded field.

For continuous fields (quantitative or temporal), sort can be either "ascending" or "descending".

For discrete fields, sort can be one of the following:

Default value: "ascending"

Note: null and sorting by another channel is not supported for row and column.

See also: sort documentation.

stack : anyOf(StackOffset, None, boolean)

Type of stacking offset if the field should be stacked. stack is only applicable for x and y channels with continuous domains. For example, stack of y can be used to customize stacking for a vertical bar chart.

stack can be one of the following values:

  • "center" - stacking with center baseline (for `streamgraph

<https://vega.github.io/vega-lite/docs/stack.html#streamgraph>`__ ). * null or false - No-stacking. This will produce layered `bar

Default value: zero for plots with all of the following conditions are true: (1) the mark is bar or area ; (2) the stacked measure channel (x or y) has a linear scale; (3) At least one of non-position channels mapped to an unaggregated field that is different from x and y. Otherwise, null by default.

See also: stack documentation.

timeUnit : TimeUnit

Time unit (e.g., year, yearmonth, month, hours ) for a temporal field. or a temporal field that gets casted as ordinal.

Default value: undefined (None)

See also: timeUnit documentation.

title : anyOf(Text, None)

A title for the field. If null, the title will be removed.

Default value: derived from the field’s name and transformation function ( aggregate, bin and timeUnit ). If the field has an aggregate function, the function is displayed as part of the title (e.g., "Sum of Profit" ). If the field is binned or has a time unit applied, the applied function is shown in parentheses (e.g., "Profit (binned)", "Transaction Date (year-month)" ). Otherwise, the title is simply the field name.

Notes :

1) You can customize the default field title format by providing the fieldTitle property in the config or fieldTitle function via the compile function’s options.

2) If both field definition’s title and axis, header, or legend title are defined, axis/header/legend title will be used.

type : StandardType

The encoded field’s type of measurement ( "quantitative", "temporal", "ordinal", or "nominal" ). It can also be a "geojson" type for encoding ‘geoshape’.

Note:

  • Data values for a temporal field can be either a date-time string (e.g., "2015-03-07 12:32:17", "17:01", "2015-03-16". "2015" ) or a timestamp number (e.g., 1552199579097 ).
  • Data type describes the semantics of the data rather than the primitive data types (number, string, etc.). The same primitive data type can have different types of measurement. For example, numeric data can represent quantitative, ordinal, or nominal data.
  • When using with bin, the type property can be either "quantitative" (for using a linear bin scale) or “ordinal” (for using an ordinal bin scale).
  • When using with timeUnit, the type property can be either "temporal" (for using a temporal scale) or “ordinal” (for using an ordinal scale).
  • When using with aggregate, the type property refers to the post-aggregation data type. For example, we can calculate count distinct of a categorical field "cat" using {"aggregate": "distinct", "field": "cat", "type": "quantitative"}. The "type" of the aggregate output is "quantitative".
  • Secondary channels (e.g., x2, y2, xError, yError ) do not have type as they have exactly the same type as their primary channels (e.g., x, y ).

See also: type documentation.

__init__(shorthand=Undefined, aggregate=Undefined, axis=Undefined, band=Undefined, bin=Undefined, field=Undefined, impute=Undefined, scale=Undefined, sort=Undefined, stack=Undefined, timeUnit=Undefined, title=Undefined, type=Undefined, **kwds)

Methods

__init__([shorthand, aggregate, axis, band, …])
copy([deep, ignore]) Return a copy of the object
from_dict(dct[, validate, _wrapper_classes]) Construct class from a dictionary representation
from_json(json_string[, validate]) Instantiate the object from a valid JSON string
resolve_references([schema]) Resolve references in the context of this object’s schema or root schema.
to_dict([validate, ignore, context])
to_json([validate, ignore, context, indent, …]) Emit the JSON representation for this object as a string.
validate(instance[, schema]) Validate the instance against the class schema in the context of the rootschema.
validate_property(name, value[, schema]) Validate a property against property schema in the context of the
copy(deep=True, ignore=())

Return a copy of the object

Parameters:
deep : boolean or list, optional

If True (default) then return a deep copy of all dict, list, and SchemaBase objects within the object structure. If False, then only copy the top object. If a list or iterable, then only copy the listed attributes.

ignore : list, optional

A list of keys for which the contents should not be copied, but only stored by reference.

from_dict(dct, validate=True, _wrapper_classes=None)

Construct class from a dictionary representation

Parameters:
dct : dictionary

The dict from which to construct the class

validate : boolean

If True (default), then validate the input against the schema.

_wrapper_classes : list (optional)

The set of SchemaBase classes to use when constructing wrappers of the dict inputs. If not specified, the result of cls._default_wrapper_classes will be used.

Returns:
obj : Schema object

The wrapped schema

Raises:
jsonschema.ValidationError :

if validate=True and dct does not conform to the schema

from_json(json_string, validate=True, **kwargs)

Instantiate the object from a valid JSON string

Parameters:
json_string : string

The string containing a valid JSON chart specification.

validate : boolean

If True (default), then validate the input against the schema.

**kwargs :

Additional keyword arguments are passed to json.loads

Returns:
chart : Chart object

The altair Chart object built from the specification.

resolve_references(schema=None)

Resolve references in the context of this object’s schema or root schema.

to_json(validate=True, ignore=[], context={}, indent=2, sort_keys=True, **kwargs)

Emit the JSON representation for this object as a string.

Parameters:
validate : boolean or string

If True (default), then validate the output dictionary against the schema. If “deep” then recursively validate all objects in the spec. This takes much more time, but it results in friendlier tracebacks for large objects.

ignore : list

A list of keys to ignore. This will not passed to child to_dict function calls.

context : dict (optional)

A context dictionary that will be passed to all child to_dict function calls

indent : integer, default 2

the number of spaces of indentation to use

sort_keys : boolean, default True

if True, sort keys in the output

**kwargs

Additional keyword arguments are passed to json.dumps()

Returns:
spec : string

The JSON specification of the chart object.

validate(instance, schema=None)

Validate the instance against the class schema in the context of the rootschema.

validate_property(name, value, schema=None)

Validate a property against property schema in the context of the rootschema