Quantile Transform
The quantile transform calculates empirical quantile values for input data. If a groupby parameter is provided, quantiles are estimated separately per group. Among other uses, the quantile transform is useful for creating quantile-quantile (Q-Q) plots.
Here is an example of a quantile plot of normally-distributed data:
import altair as alt
import pandas as pd
import numpy as np
np.random.seed(42)
df = pd.DataFrame({'x': np.random.randn(200)})
alt.Chart(df).transform_quantile(
    'x', step=0.01
).mark_point().encode(
    x='prob:Q',
    y='value:Q'
)
                  Transform Options
The transform_quantile()
                    method is built on the QuantileTransform
                    class, which has the following options:
| Property | Type | Description | 
|---|---|---|
| as | array(any) | The output field names for the probability and quantile values. Default value:  | 
| groupby | array( | The data fields to group by. If not specified, a single group containing all data objects will be used. | 
| probs | array( | An array of probabilities in the range (0, 1) for which to compute quantile values. If not specified, the step parameter will be used. | 
| quantile | The data field for which to perform quantile estimation. | |
| step | 
 | A probability step size (default 0.01) for sampling quantile values. All values from one-half the step size up to 1 (exclusive) will be sampled. This parameter is only used if the probs parameter is not provided. |