altair.ThetaDatum
- class altair.ThetaDatum(datum, band=Undefined, scale=Undefined, stack=Undefined, type=Undefined, **kwds)
-
ThetaDatum schema wrapper
Mapping(required=[])
- Attributes
-
- bandfloat
-
For rect-based marks (
rect
,bar
, andimage
), mark size relative to bandwidth of band scales, bins or time units. If set to1
, the mark size is set to the bandwidth, the bin interval, or the time unit interval. If set to0.5
, the mark size is half of the bandwidth or the time unit interval.For other marks, relative position on a band of a stacked, binned, time unit or band scale. If set to
0
, the marks will be positioned at the beginning of the band. If set to0.5
, the marks will be positioned in the middle of the band. - datumanyOf(
PrimitiveValue
,DateTime
,ExprRef
, - :class:`RepeatRef`)
-
A constant value in data domain.
- scaleanyOf(
Scale
, None) -
An object defining properties of the channel’s scale, which is the function that transforms values in the data domain (numbers, dates, strings, etc) to visual values (pixels, colors, sizes) of the encoding channels.
If
null
, the scale will be disabled and the data value will be directly encoded.Default value: If undefined, default scale properties are applied.
See also: scale documentation.
- stackanyOf(
StackOffset
, None, boolean) -
Type of stacking offset if the field should be stacked.
stack
is only applicable forx
,y
,theta
, andradius
channels with continuous domains. For example,stack
ofy
can be used to customize stacking for a vertical bar chart.stack
can be one of the following values: -"zero"
or true: stacking with baseline offset at zero value of the scale (for creating typical stacked [bar](https://vega.github.io/vega-lite/docs/stack.html#bar) and area chart). -"normalize"
- stacking with normalized domain (for creating normalized stacked bar and area charts.
-"center"
- stacking with center baseline (for streamgraph ). -null
orfalse
- No-stacking. This will produce layered bar and area chart.Default value:
zero
for plots with all of the following conditions are true: (1) the mark isbar
,area
, orarc
; (2) the stacked measure channel (x or y) has a linear scale; (3) At least one of non-position channels mapped to an unaggregated field that is different from x and y. Otherwise,null
by default.See also: stack documentation.
- type
Type
-
The type of measurement (
"quantitative"
,"temporal"
,"ordinal"
, or"nominal"
) for the encoded field or constant value (datum
). It can also be a"geojson"
type for encoding ‘geoshape’.Vega-Lite automatically infers data types in many cases as discussed below. However, type is required for a field if: (1) the field is not nominal and the field encoding has no specified
aggregate
(exceptargmin
andargmax
),bin
, scale type, customsort
order, nortimeUnit
or (2) if you wish to use an ordinal scale for a field withbin
ortimeUnit
.Default value:
1) For a data
field
,"nominal"
is the default data type unless the field encoding hasaggregate
,channel
,bin
, scale type,sort
, ortimeUnit
that satisfies the following criteria: -"quantitative"
is the default type if (1) the encoded field containsbin
oraggregate
except"argmin"
and"argmax"
, (2) the encoding channel islatitude
orlongitude
channel or (3) if the specified scale type is a quantitative scale. -"temporal"
is the default type if (1) the encoded field containstimeUnit
or (2) the specified scale type is a time or utc scale -ordinal""
is the default type if (1) the encoded field contains a custom sort order, (2) the specified scale type is an ordinal/point/band scale, or (3) the encoding channel isorder
.2) For a constant value in data domain (
datum
): -"quantitative"
if the datum is a number -"nominal"
if the datum is a string -"temporal"
if the datum is a date time objectNote: - Data
type
describes the semantics of the data rather than the primitive data types (number, string, etc.). The same primitive data type can have different types of measurement. For example, numeric data can represent quantitative, ordinal, or nominal data. - Data values for a temporal field can be either a date-time string (e.g.,"2015-03-07 12:32:17"
,"17:01"
,"2015-03-16"
."2015"
) or a timestamp number (e.g.,1552199579097
). - When using with bin, thetype
property can be either"quantitative"
(for using a linear bin scale) or “ordinal” (for using an ordinal bin scale). - When using with timeUnit, thetype
property can be either"temporal"
(default, for using a temporal scale) or “ordinal” (for using an ordinal scale). - When using with aggregate, thetype
property refers to the post-aggregation data type. For example, we can calculate countdistinct
of a categorical field"cat"
using{"aggregate": "distinct", "field": "cat"}
. The"type"
of the aggregate output is"quantitative"
. - Secondary channels (e.g.,x2
,y2
,xError
,yError
) do not havetype
as they must have exactly the same type as their primary channels (e.g.,x
,y
).See also: type documentation.
- __init__(datum, band=Undefined, scale=Undefined, stack=Undefined, type=Undefined, **kwds)
Methods
__init__
(datum[, band, scale, stack, type])copy
([deep, ignore])Return a copy of the object
from_dict
(dct[, validate, _wrapper_classes])Construct class from a dictionary representation
from_json
(json_string[, validate])Instantiate the object from a valid JSON string
resolve_references
([schema])Resolve references in the context of this object's schema or root schema.
to_dict
([validate, ignore, context])Return a dictionary representation of the object
to_json
([validate, ignore, context, indent, ...])Emit the JSON representation for this object as a string.
validate
(instance[, schema])Validate the instance against the class schema in the context of the rootschema.
validate_property
(name, value[, schema])Validate a property against property schema in the context of the rootschema