API Reference¶
-
class
pdvega.
Axes
(spec=None, data=None)¶ Class representing a pdvega plot axes
-
display
()¶
-
data
¶
-
spec
¶
-
spec_no_data
¶
-
-
class
pdvega.
FramePlotMethods
(data)¶ DataFrame Accessor & Method for creating Vega-Lite visualizations.
Examples
>>> df.vgplot.line() >>> df.vgplot.area() >>> df.vgplot.bar() >>> df.vgplot.barh() >>> df.vgplot.hist() >>> df.vgplot.kde() >>> df.vgplot.density() >>> df.vgplot.scatter(x, y) >>> df.vgplot.hexbin(x, y)
Plotting methods can also be accessed by calling the accessor as a method with the
kind
argument:df.vgplot(kind='line', **kwds)
is equivalent todf.vgplot.line(**kwds)
-
area
(x=None, y=None, stacked=True, alpha=None, var_name='variable', value_name='value', interactive=True, width=450, height=300, **kwds)¶ Area plot for DataFrame data
>>> dataframe.vgplot.area()
Parameters: x : string, optional
the column to use as the x-axis variable. If not specified, the index will be used.
y : string, optional
the column to use as the y-axis variable. If not specified, all columns (except x if specified) will be used.
stacked : bool, optional
if True (default) then create a stacked area chart. Otherwise, areas will overlap
alpha : float, optional
transparency level, 0 <= alpha <= 1
var_name : string, optional
the legend title
value_name : string, optional
the y-axis label
interactive : bool, optional
if True (default) then produce an interactive plot
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
Returns: axes : pdvega.Axes
The vega-lite plot
-
bar
(x=None, y=None, stacked=False, alpha=None, var_name='variable', value_name='value', interactive=True, width=450, height=300, **kwds)¶ Bar plot for DataFrame data
>>> dataframe.vgplot.bar()
Parameters: x : string, optional
the column to use as the x-axis variable. If not specified, the index will be used.
y : string, optional
the column to use as the y-axis variable. If not specified, all columns (except x if specified) will be used.
stacked : bool, optional
if True (default) then create a stacked area chart. Otherwise, areas will overlap
alpha : float, optional
transparency level, 0 <= alpha <= 1
var_name : string, optional
the legend title
value_name : string, optional
the y-axis label
interactive : bool, optional
if True (default) then produce an interactive plot
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
Returns: axes : pdvega.Axes
The vega-lite plot
-
barh
(x=None, y=None, stacked=False, alpha=None, var_name='variable', value_name='value', interactive=True, width=450, height=300, **kwds)¶ Horizontal bar plot for DataFrame data
>>> dataframe.vgplot.barh()
Parameters: x : string, optional
the column to use as the x-axis variable. If not specified, the index will be used.
y : string, optional
the column to use as the y-axis variable. If not specified, all columns (except x if specified) will be used.
stacked : bool, optional
if True (default) then create a stacked area chart. Otherwise, areas will overlap
alpha : float, optional
transparency level, 0 <= alpha <= 1
var_name : string, optional
the legend title
value_name : string, optional
the y-axis label
interactive : bool, optional
if True (default) then produce an interactive plot
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
Returns: axes : pdvega.Axes
The vega-lite plot
-
density
(x=None, y=None, bw_method=None, alpha=None, interactive=True, width=450, height=300, **kwds)¶ Kernel Density Estimate plot for DataFrame data
>>> dataframe.vgplot.kde()
Parameters: x : string, optional
the column to use as the x-axis variable. If not specified, the index will be used.
y : string, optional
the column to use as the y-axis variable. If not specified, all columns (except x if specified) will be used.
bw_method : str, scalar or callable, optional
The method used to calculate the estimator bandwidth. This can be ‘scott’, ‘silverman’, a scalar constant or a callable. See scipy.stats.gaussian_kde for more details.
alpha : float, optional
transparency level, 0 <= alpha <= 1
interactive : bool, optional
if True (default) then produce an interactive plot
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
Returns: axes : pdvega.Axes
The vega-lite plot
-
heatmap
(x, y, C=None, reduce_C_function=None, gridsize=100, alpha=None, interactive=True, width=450, height=300, **kwds)¶ Heatmap plot for DataFrame data
Note that Vega-Lite does not support hexagonal binning, so this method returns a cartesian heatmap.
>>> dataframe.vgplot.hexbin()
Parameters: x : string
the column to use as the x-axis variable.
y : string
the column to use as the y-axis variable.
C : string, optional
the column to use to compute the mean within each bin. If not specified, the count within each bin will be used.
reduce_C_function : callable, optional
the type of reduction to be done within each bin (not implemented)
gridsize : int, optional
the number of divisions in the x and y axis (default=100)
alpha : float, optional
transparency level, 0 <= alpha <= 1
interactive : bool, optional
if True (default) then produce an interactive plot
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
Returns: axes : pdvega.Axes
The vega-lite plot
-
hexbin
(x, y, C=None, reduce_C_function=None, gridsize=100, alpha=None, interactive=True, width=450, height=300, **kwds)¶ Heatmap plot for DataFrame data
Note that Vega-Lite does not support hexagonal binning, so this method returns a cartesian heatmap.
>>> dataframe.vgplot.hexbin()
Parameters: x : string
the column to use as the x-axis variable.
y : string
the column to use as the y-axis variable.
C : string, optional
the column to use to compute the mean within each bin. If not specified, the count within each bin will be used.
reduce_C_function : callable, optional
the type of reduction to be done within each bin (not implemented)
gridsize : int, optional
the number of divisions in the x and y axis (default=100)
alpha : float, optional
transparency level, 0 <= alpha <= 1
interactive : bool, optional
if True (default) then produce an interactive plot
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
Returns: axes : pdvega.Axes
The vega-lite plot
-
hist
(x=None, y=None, by=None, bins=10, stacked=False, alpha=None, histtype='bar', var_name='variable', value_name='value', interactive=True, width=450, height=300, **kwds)¶ Histogram plot for DataFrame data
>>> dataframe.vgplot.hist()
Parameters: x : string, optional
the column to use as the x-axis variable. If not specified, the index will be used.
y : string, optional
the column to use as the y-axis variable. If not specified, all columns (except x if specified) will be used.
by : string, optional
the column by which to group the results
bins : integer, optional
the maximum number of bins to use for the histogram (default: 10)
stacked : bool, optional
if True (default) then create a stacked area chart. Otherwise, areas will overlap
alpha : float, optional
transparency level, 0 <= alpha <= 1
histtype : string, {‘bar’, ‘step’, ‘stepfilled’}
The type of histogram to generate. Default is ‘bar’.
var_name : string, optional
the legend title
value_name : string, optional
the y-axis label
interactive : bool, optional
if True (default) then produce an interactive plot
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
Returns: axes : pdvega.Axes
The vega-lite plot
-
kde
(x=None, y=None, bw_method=None, alpha=None, interactive=True, width=450, height=300, **kwds)¶ Kernel Density Estimate plot for DataFrame data
>>> dataframe.vgplot.kde()
Parameters: x : string, optional
the column to use as the x-axis variable. If not specified, the index will be used.
y : string, optional
the column to use as the y-axis variable. If not specified, all columns (except x if specified) will be used.
bw_method : str, scalar or callable, optional
The method used to calculate the estimator bandwidth. This can be ‘scott’, ‘silverman’, a scalar constant or a callable. See scipy.stats.gaussian_kde for more details.
alpha : float, optional
transparency level, 0 <= alpha <= 1
interactive : bool, optional
if True (default) then produce an interactive plot
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
Returns: axes : pdvega.Axes
The vega-lite plot
-
line
(x=None, y=None, alpha=None, var_name='variable', value_name='value', interactive=True, width=450, height=300, **kwds)¶ Line plot for DataFrame data
>>> dataframe.vgplot.line()
Parameters: x : string, optional
the column to use as the x-axis variable. If not specified, the index will be used.
y : string, optional
the column to use as the y-axis variable. If not specified, all columns (except x if specified) will be used.
alpha : float, optional
transparency level, 0 <= alpha <= 1
var_name : string, optional
the legend title
value_name : string, optional
the y-axis label
interactive : bool, optional
if True (default) then produce an interactive plot
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
Returns: axes : pdvega.Axes
The vega-lite plot
-
scatter
(x, y, c=None, s=None, alpha=None, interactive=True, width=450, height=300, **kwds)¶ Scatter plot for DataFrame data
>>> dataframe.vgplot.scatter(x, y)
Parameters: x : string
the column to use as the x-axis variable.
y : string
the column to use as the y-axis variable.
c : string, optional
the column to use to encode the color of the points
s : string, optional
the column to use to encode the size of the points
alpha : float, optional
transparency level, 0 <= alpha <= 1
interactive : bool, optional
if True (default) then produce an interactive plot
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
Returns: axes : pdvega.Axes
The vega-lite plot
-
-
class
pdvega.
SeriesPlotMethods
(data)¶ Series Accessor & Method for creating Vega-Lite visualizations.
Examples
>>> s.vgplot.line() >>> s.vgplot.area() >>> s.vgplot.bar() >>> s.vgplot.barh() >>> s.vgplot.hist() >>> s.vgplot.kde() >>> s.vgplot.density()
Plotting methods can also be accessed by calling the accessor as a method with the
kind
argument:s.vgplot(kind='line', **kwds)
is equivalent tos.vgplot.line(**kwds)
-
area
(alpha=None, interactive=True, width=450, height=300, **kwds)¶ Area plot for Series data
>>> series.vgplot.area()
Parameters: alpha : float, optional
transparency level, 0 <= alpha <= 1
interactive : bool, optional
if True (default) then produce an interactive plot
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
Returns: axes : pdvega.Axes
The vega-lite plot
-
bar
(alpha=None, interactive=True, width=450, height=300, **kwds)¶ Bar plot for Series data
>>> series.vgplot.bar()
Parameters: alpha : float, optional
transparency level, 0 <= alpha <= 1
interactive : bool, optional
if True (default) then produce an interactive plot
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
Returns: axes : pdvega.Axes
The vega-lite plot
-
barh
(alpha=None, interactive=True, width=450, height=300, **kwds)¶ Horizontal bar plot for Series data
>>> series.vgplot.barh()
Parameters: alpha : float, optional
transparency level, 0 <= alpha <= 1
interactive : bool, optional
if True (default) then produce an interactive plot
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
Returns: axes : pdvega.Axes
The vega-lite plot
-
density
(bw_method=None, alpha=None, interactive=True, width=450, height=300, **kwds)¶ Kernel Density Estimation plot for Series data
>>> series.vgplot.kde()
Parameters: bw_method : str, scalar or callable, optional
The method used to calculate the estimator bandwidth. This can be ‘scott’, ‘silverman’, a scalar constant or a callable. See scipy.stats.gaussian_kde for more details.
alpha : float, optional
transparency level, 0 <= alpha <= 1
interactive : bool, optional
if True (default) then produce an interactive plot
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
Returns: axes : pdvega.Axes
The vega-lite plot
-
hist
(bins=10, alpha=None, histtype='bar', interactive=True, width=450, height=300, **kwds)¶ Histogram plot for Series data
>>> series.vgplot.hist()
Parameters: bins : integer, optional
the maximum number of bins to use for the histogram (default: 10)
alpha : float, optional
transparency level, 0 <= alpha <= 1
histtype : string, {‘bar’, ‘step’, ‘stepfilled’}
The type of histogram to generate. Default is ‘bar’.
interactive : bool, optional
if True (default) then produce an interactive plot
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
Returns: axes : pdvega.Axes
The vega-lite plot
-
kde
(bw_method=None, alpha=None, interactive=True, width=450, height=300, **kwds)¶ Kernel Density Estimation plot for Series data
>>> series.vgplot.kde()
Parameters: bw_method : str, scalar or callable, optional
The method used to calculate the estimator bandwidth. This can be ‘scott’, ‘silverman’, a scalar constant or a callable. See scipy.stats.gaussian_kde for more details.
alpha : float, optional
transparency level, 0 <= alpha <= 1
interactive : bool, optional
if True (default) then produce an interactive plot
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
Returns: axes : pdvega.Axes
The vega-lite plot
-
line
(alpha=None, interactive=True, width=450, height=300, **kwds)¶ Line plot for Series data
>>> series.vgplot.line()
Parameters: alpha : float, optional
transparency level, 0 <= alpha <= 1
interactive : bool, optional
if True (default) then produce an interactive plot
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
Returns: axes : pdvega.Axes
The vega-lite plot
-
-
pdvega.
andrews_curves
(data, class_column, samples=200, alpha=None, width=450, height=300, interactive=True, **kwds)¶
-
pdvega.
lag_plot
(data, lag=1, **kwds)¶ Lag plot for time series.
Parameters: data: pandas.Series
the time series to plot
lag: integer
The lag of the scatter plot, default=1
kwds:
Additional keywords passed to data.vgplot.scatter
Returns: plot: VegaLite plot object
-
pdvega.
parallel_coordinates
(data, class_column, cols=None, alpha=None, width=450, height=300, interactive=True, var_name='variable', value_name='value', **kwds)¶ Parallel coordinates plotting.
Parameters: frame: DataFrame
class_column: str
Column name containing class names
cols: list, optional
A list of column names to use
alpha: float, optional
The transparency of the lines
Returns: plot : VegaLite object
The Vega-Lite representation of the plot.
See also
pandas.plotting.parallel_coordinates
- matplotlib version of this routine
-
pdvega.
scatter_matrix
(frame, c=None, s=None, figsize=None, dpi=72.0, **kwds)¶ Draw a matrix of scatter plots.
The result is an interactive pan/zoomable plot, with linked-brushing enabled by holding the shift key.
Parameters: frame : DataFrame
The dataframe for which to draw the scatter matrix.
c : string (optional)
If specified, the name of the column to be used to determine the color of each point.
s : string (optional)
If specified, the name of the column to be used to determine the size of each point,
figsize : tuple (optional)
A length-2 tuple speficying the size of the figure in inches
dpi : float (default=72)
The dots (i.e. pixels) per inch used to convert the figure size from inches to pixels.
Returns: plot : VegaLite object
The Vega-Lite representation of the plot.
See also
pandas.plotting.scatter_matrix
- matplotlib version of this routine